02_pyscf-HF_turbo-VMC_moleculesΒΆ

From this tutorial, you can learn how to compare HF energies obtained by pySCF and VMC energies obtained by TurboRVB for 100 molecules using turboworkflows. Here is a python script to compute it. You can download the csv and geometry files for this tutorial from here.

../../../_images/pyscf_turborvb_sanity_check_HF.png
#!/usr/bin/env python
# coding: utf-8

# python packages
import os, sys
import numpy as np
import pandas as pd
from ase import Atoms
from ase.io import write, read

# turboworkflows packages
from turboworkflows.workflow_encapsulated import eWorkflow
from turboworkflows.workflow_lrdmc_ext import LRDMC_ext_workflow
from turboworkflows.workflow_vmc import VMC_workflow
from turboworkflows.workflow_pyscf import PySCF_workflow
from turboworkflows.workflow_trexio import TREXIO_convert_to_turboWF
from turboworkflows.workflow_vmcopt import VMCopt_workflow
from turboworkflows.workflow_lanchers import Launcher, Variable
from turboworkflows.workflow_prep import DFT_workflow

# read molecules and its info.
mol_info=pd.read_csv("data_sanity_check.csv")
mol_calc=mol_info[mol_info["Flag"]==True]

# info list:
species_list=list(mol_calc["Species"])
type_list=list(mol_calc["Type"])
label_list=list(mol_calc["Label"])
scf_newton_list=list(mol_calc["scf_newton"])
pyscf_basis_list=list(mol_calc["pyscf_basis"])
pyscf_ecp_list=list(mol_calc["pyscf_ecp"])
charge_list=list(mol_calc["Charge"])
neldiff_list=list(mol_calc["Neldiff"])
geom_ref_list=list(mol_calc["Geometry Reference"])

pid=os.getpid()
with open("turboworkflows.pid", "w") as f: f.write(str(pid)+'\n')

root_dir=os.getcwd()
result_dir=os.path.join(os.getcwd(), "results")
os.makedirs(result_dir, exist_ok=True)
os.chdir(result_dir)

cworkflows_list=[]

for species,type,label,scf_newton,pyscf_basis,pyscf_ecp,charge,neldiff,geom_ref in zip(species_list,type_list,label_list,scf_newton_list,pyscf_basis_list,pyscf_ecp_list,charge_list,neldiff_list,geom_ref_list):

    mol_root_dir=os.path.join(result_dir, label)

    #copy or generate xyz file.
    if type=="atom":
        at = Atoms(species, positions=[(0, 0, 0)])
        write(f"{species}.xyz", at)

    elif type=="molecule":
        at = read(os.path.join(root_dir,"geometry", f"{species}.xyz"))
        write(f"{species}.xyz", at)

    else:
        sys.exit()

    pyscf_HF_workflow = eWorkflow(
    label=f'pyscf-HF-workflow-{label}',
    dirname=os.path.join(mol_root_dir, f'pyscf-HF-workflow'),
    input_files=[f"{species}.xyz"],
    workflow=PySCF_workflow(
        ## structure file (mandatory)
        structure_file=f"{species}.xyz",
        ## job
        server_machine_name="kagayaki",
        cores=128,
        openmp=128,
        queue="SINGLE",
        version="stable",
        sleep_time=600,  # sec.
        jobpkl_name="job_manager",
        ## pyscf
        pyscf_rerun=False,
        pyscf_pkl_name="pyscf_genius",
        charge=charge,
        spin=neldiff,
        basis=pyscf_basis,
        ecp=pyscf_ecp,
        scf_method="HF",
        dft_xc="NA",
        pyscf_output="out.pyscf",
        pyscf_chkfile="pyscf.chk",
        solver_newton=scf_newton,
        twist_average=False,
        exp_to_discard=0.00,
        kpt=[0.0, 0.0, 0.0],  # scaled_kpts!! i.e., crystal coord.
        kpt_grid=[1, 1, 1]
        )
    )

    cworkflows_list+=[pyscf_HF_workflow]

    #continue #to check pyscf convergences

    trexio_HF_workflow = eWorkflow(
        label=f'trexio-HF-workflow-{label}',
        dirname=os.path.join(mol_root_dir, f'trexio-HF-workflow'),
        input_files=[Variable(label=f'pyscf-HF-workflow-{label}', vtype='file', name='trexio.hdf5')],
        workflow=TREXIO_convert_to_turboWF(
            trexio_filename="trexio.hdf5",
            twist_average=False,
            jastrow_basis_dict={},
            max_occ_conv=1.0e-4,
            trexio_rerun=False,
            trexio_pkl_name="trexio_genius"
        )
    )

    vmc_HF_workflow = eWorkflow(
        label=f'vmc-HF-workflow-{label}',
        dirname=os.path.join(mol_root_dir, f'vmc-HF-workflow'),
        input_files=[Variable(label=f'trexio-HF-workflow-{label}', vtype='file', name='fort.10'),
                    Variable(label=f'trexio-HF-workflow-{label}', vtype='file', name='pseudo.dat')],
        workflow=VMC_workflow(
            ## job
            server_machine_name="fugaku",
            cores=2304,
            openmp=1,
            queue="small",
            version="stable",
            sleep_time=9600, # sec.
            jobpkl_name="job_manager",
            ## vmc
            vmc_max_continuation=2,
            vmc_pkl_name="vmc_genius",
            vmc_target_error_bar=1.0e-5, # Ha
            vmc_trial_steps= 150,
            vmc_bin_block = 10,
            vmc_warmupblocks = 5,
            vmc_num_walkers = -1, # default -1 -> num of MPI process.
            vmc_twist_average=False,
            vmc_kpoints=[],
            vmc_force_calc_flag=False,
            vmc_maxtime=84600,
        )
    )

    cworkflows_list+=[vmc_HF_workflow, trexio_HF_workflow]

    vmc_HF_workflow_gpu = eWorkflow(
        label=f'vmc-HF-workflow-{label}-gpu',
        dirname=os.path.join(mol_root_dir, f'vmc-HF-workflow-gpu'),
        input_files=[Variable(label=f'trexio-HF-workflow-{label}', vtype='file', name='fort.10'),
                    Variable(label=f'trexio-HF-workflow-{label}', vtype='file', name='pseudo.dat')],
        workflow=VMC_workflow(
            ## job
            server_machine_name="m100",
            cores=512,
            openmp=1,
            queue="small",
            version="stable",
            sleep_time=9600, # sec.
            jobpkl_name="job_manager",
            ## vmc
            vmc_max_continuation=2,
            vmc_pkl_name="vmc_genius",
            vmc_target_error_bar=1.0e-5, # Ha
            vmc_trial_steps= 150,
            vmc_bin_block = 10,
            vmc_warmupblocks = 5,
            vmc_num_walkers = -1, # default -1 -> num of MPI process.
            vmc_twist_average=False,
            vmc_kpoints=[],
            vmc_force_calc_flag=False,
            vmc_maxtime=84600,
        )
    )

    cworkflows_list+=[vmc_HF_workflow_gpu]

launcher=Launcher(cworkflows_list=cworkflows_list, dependency_graph_draw=True)
launcher.launch()